A fractional porous medium equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear nonlocal diffusion: A fractional porous medium equation

We develop a theory of existence and uniqueness for the following porous medium equation with fractional diffusion,  ∂u ∂t + (−∆)σ/2(|u|m−1u) = 0, x ∈ RN , t > 0, u(x, 0) = f(x), x ∈ RN , with data f ∈ L1(RN ) and exponents 0 < σ < 2, m > m∗ = (N − σ)+/N . An L1-contraction semigroup is constructed. Nonnegative solutions are proved to be continuous and strictly positive for all x ∈ RN , t > 0...

متن کامل

The Mesa Problem for the Fractional Porous Medium Equation

We investigate the behaviour of the solutions um(x, t) of the fractional porous medium equation ut + (−∆)(u) = 0, x ∈ R , t > 0. with initial data u(x, 0) ≥ 0, x ∈ RN , in the limit of as m → ∞ with fixed s ∈ (0, 1). We first identify the limit of the Barenblatt solutions as the solution of a fractional obstacle problem, and we observe that, contrary to the case s = 1, the limit is not compactl...

متن کامل

Periodic solutions of a porous medium equation

In this paper, we study with a periodic porous medium equation with nonlinear convection terms and weakly nonlinear sources under Dirichlet boundary conditions. Based on the theory of Leray-Shauder fixed point theorem, we establish the existence of periodic solutions.

متن کامل

Probabilistic approximation for a porous medium equation

In this paper, we are interested in the one-dimensional porous medium equation when the initial condition is the distribution function of a probability measure. We associate a nonlinear martingale problem with it. After proving uniqueness for the martingale problem, we show existence owing to a propagation of chaos result for a system of weakly interacting di usion processes. The particle syste...

متن کامل

Well-posedness of a fractional porous medium equation on an evolving surface

We investigate the existence, uniqueness, and L-contractivity of weak solutions to a porous medium equation with fractional diffusion on an evolving hypersurface. To settle the existence, we reformulate the equation as a local problem on a semi-infinite cylinder, regularise the porous medium nonlinearity and truncate the cylinder. Then we pass to the limit first in the truncation parameter and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2011

ISSN: 0001-8708

DOI: 10.1016/j.aim.2010.07.017